Neurogenesis

[1]:
import getopt
import pandas as pd
import numpy as np
import pickle
import os
import sys
import phlower
import scanpy as sc
from datetime import datetime
from matplotlib import pyplot as plt
from collections import Counter
[2]:
## from scvelo.datasets.dentategyrus_lamanno()
print(datetime.now(),"loading...")
adata = phlower.dataset.neurogenesis()
adata.var_names_make_unique()

print(datetime.now(),"mt...")
# annotate the group of mitochondrial genes as "mt"
adata.var["mt"] = adata.var_names.str.startswith("mt-")
sc.pp.calculate_qc_metrics(
    adata, qc_vars=["mt"], percent_top=None, log1p=False, inplace=True
)
2025-01-14 15:52:33.429898 loading...
2025-01-14 15:52:34.920234 mt...
[3]:
print(datetime.now(),"preprocessing...")
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.filter_genes(adata, min_cells=3)
sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(adata, min_mean=0.0125, max_mean=3, min_disp=0.5)
adata = adata[:, adata.var.highly_variable]
sc.pp.regress_out(adata, ["total_counts", "pct_counts_mt"])

print(datetime.now(),"pca...")
sc.tl.pca(adata, svd_solver="arpack")

adata.obs['group'] = adata.obs['clusters']
2025-01-14 15:52:35.494529 preprocessing...
2025-01-14 15:53:05.777980 pca...
[4]:
phlower.ext.ddhodge(adata, basis='X_pca', roots=(adata.obs.group=="nIPC"), k=12, npc=40,ndc=5,s=1, verbose=True)
2025-01-14 15:53:08.446259 distance_matrix
2025-01-14 15:53:41.729824 Diffusionmaps:
done.
2025-01-14 15:55:10.265315 diffusion distance:
2025-01-14 15:55:21.895666 transition matrix:
2025-01-14 15:55:34.563674 graph from A
2025-01-14 15:55:35.451916 Rewiring:
2025-01-14 15:55:35.452000 div(g_o)...
2025-01-14 15:57:24.801157 edge weight...
2025-01-14 15:57:28.130695 cholesky solve ax=b...
+ 1e-06 I is positive-definite
2025-01-14 15:58:57.280354 grad...
2025-01-14 16:17:55.681036 potential.
2025-01-14 16:36:47.933767 ddhodge done.
done.
2025-01-14 16:36:49.143244 calculate layouts
2025-01-14 17:33:56.925509 done
[5]:
phlower.tl.construct_delaunay_persistence(adata, start_n=10, end_n=10, circle_quant=0.7, min_persistence=0.1)
start clusters  ['CA', 'Granule', 'CA2-3-4', 'RadialGlia', 'ImmAstro', 'ImmGranule2', 'OPC', 'ImmGranule1', 'Nbl2', 'nIPC', 'RadialGlia2', 'Nbl1', 'CA1-Sub', 'GlialProg']
end clusters  ['CA', 'Granule', 'CA2-3-4', 'RadialGlia', 'ImmAstro', 'ImmGranule2', 'OPC', 'ImmGranule1', 'Nbl2', 'nIPC', 'RadialGlia2', 'Nbl1', 'CA1-Sub']
[6]:
fig, axes = plt.subplots(1, 3, figsize=(20, 5))
phlower.pl.persisitence_barcodes(adata, ax=axes[0], include_holes=False, barcodes_dim=[0])
phlower.pl.persisitence_barcodes(adata, ax=axes[1], include_holes=False, barcodes_dim=[0,1])
phlower.pl.persisitence_birth_death(adata, ax=axes[2], include_holes=False)
[6]:
<Axes: title={'center': 'Persistence diagram'}, xlabel='Birth', ylabel='Death'>
../_images/notebooks_neurogenesis_6_1.png
[7]:
fig, ax = plt.subplots(1,2, figsize=(12,4))
phlower.pl.nxdraw_group(adata, layout_name='X_pca_ddhodge_g', graph_name='X_pca_ddhodge_g_triangulation', node_size=1, show_edges=True, ax=ax[0], show_legend=False, labelstyle='text', labelsize=8)
phlower.pl.nxdraw_group(adata, layout_name='X_pca_ddhodge_g', graph_name='X_pca_ddhodge_g_triangulation_circle', node_size=2, show_edges=True, ax=ax[1], show_legend=True, labelstyle='text', labelsize=8)
../_images/notebooks_neurogenesis_7_0.png
[8]:
phlower.pl.nxdraw_score(adata, layout_name='X_pca_ddhodge_g', graph_name='X_pca_ddhodge_g_triangulation', node_size=1)
../_images/notebooks_neurogenesis_8_0.png

Hodge decomposition

[9]:
from datetime import datetime

dt1 = datetime.now()
print('L1 Datetime Start:', dt1)

phlower.tl.L1Norm_decomp(adata, L1_mode='sym', check_symmetric=False, isnorm = True)
dt2 = datetime.now()
print('L1 Datetime End:', dt2)
delta = dt2 - dt1
print('L1 Difference is:', delta)
L1 Datetime Start: 2025-01-14 17:34:46.617858
3599.1217019557953  sec
L1 Datetime End: 2025-01-14 18:34:47.351646
L1 Difference is: 1:00:00.733788

determine harmonic

[10]:
_, ax = plt.subplots(1,2, figsize=(9,3))
phlower.pl.plot_eigen_line(adata, n_eig=10,ax=ax[0])
phlower.pl.plot_eigen_line(adata, n_eig=100, step_size=10, ax=ax[1])
../_images/notebooks_neurogenesis_12_0.png
[11]:
phlower.tl.knee_eigen(adata)
knee eigen value is  50

preference random walk

[12]:
phlower.tl.random_climb_knn(adata, n=10000, roots_ratio=0.001, knn_edges_k=16, knn_type='diffusion')
100%|██████████| 10000/10000 [01:38<00:00, 101.81it/s]

Project paths to harmonic space

[13]:
phlower.tl.trajs_matrix(adata)
2025-01-14 18:38:49.683893 projecting trajectories to simplics...
2025-01-14 18:39:40.052710 Embedding trajectory harmonics...
eigen_n < 1, use knee_eigen to find the number of eigen vectors to use: 50
/home/sz753404/miniconda3/envs/R422/lib/python3.10/site-packages/umap/umap_.py:1943: UserWarning: n_jobs value -1 overridden to 1 by setting random_state. Use no seed for parallelism.
  warn(f"n_jobs value {self.n_jobs} overridden to 1 by setting random_state. Use no seed for parallelism.")
2025-01-14 18:40:24.916227 done.

Paths clustering

[14]:
phlower.tl.trajs_clustering(adata, eps=0.3, oname_basis='')
[15]:
Counter(adata.uns['trajs_clusters'])
[15]:
Counter({0: 8297, 1: 1044, 2: 484, 4: 97, -1: 49, 3: 19, 5: 10})
[16]:
phlower.tl.unique_trajectory_clusters(adata,verbose=False)
[17]:
phlower.pl.plot_trajs_embedding(adata, clusters="trajs_clusters")
../_images/notebooks_neurogenesis_22_0.png
[18]:
fig, ax = phlower.pl.plot_density_grid(adata,  figsize=(10, 7), cluster_name='trajs_clusters', bg_alpha=0.05, return_fig=True)
z_min, z_max 4.738726832774441e-09 1.0701098323429395e-06
../_images/notebooks_neurogenesis_23_1.png

Tree creating

[19]:
phlower.tl.harmonic_stream_tree(adata, verbose=True, min_bin_number=20, min_kde_quant_rm=0.01, trim_end=False)
2025-01-14 18:41:01.634833 trajectory groups ranking...
eigen_n < 1, use knee_eigen to find the number of eigen vectors to use
eigen_n: 50
{0, 1, 2, 3}
traj bins: 100%|██████████| 4/4 [00:58<00:00, 14.57s/it]
2025-01-14 18:42:49.353899 sync bins to by pseudo time...
2025-01-14 18:42:49.765746 calculating distances between bin pairs...
2025-01-14 18:42:50.011717 fate tree creating...
[(0, 1, 2, 3)]
2025-01-14 18:42:50.012303 tree attributes adding...
2025-01-14 18:42:51.286191 plugin to STREAM...
2025-01-14 18:42:51.290195 projecting trajs to harmonic...
2025-01-14 18:43:36.229265 cumsum...
2025-01-14 18:43:39.484656 edge cumsum dict...
edges projection: 100%|██████████| 9844/9844 [00:42<00:00, 234.34it/s]
2025-01-14 18:44:33.938307 done...
there are 1444 nodes not visited in the tree
will approximate the node cumsum coordinate by 5 nearest accessible neighbors
2025-01-14 18:45:07.457487 done...

stream plot

[20]:
phlower.ext.plot_stream(adata, fig_size=(8,5), dist_scale=1, log_scale=True, factor_min_win=1, factor_num_win=5, show_legend=True)
../_images/notebooks_neurogenesis_27_0.png
[21]:
pickle.dump(adata, open("save/hip_phlower_final.pickle", 'wb'))
[22]:
import session_info
session_info.show()
[22]:
Click to view session information
-----
anndata             0.9.2
matplotlib          3.9.1.post1
numpy               1.23.5
pandas              2.2.3
phlower             0.1.3
scanpy              1.9.3
session_info        1.0.0
-----
Click to view modules imported as dependencies
Cython                      0.29.33
PIL                         9.4.0
anyio                       NA
argcomplete                 NA
arrow                       1.2.3
asciitree                   NA
asttokens                   NA
attr                        22.2.0
attrs                       22.2.0
babel                       2.12.1
backcall                    0.2.0
brotli                      NA
certifi                     2024.08.30
cffi                        1.15.1
charset_normalizer          3.1.0
cloudpickle                 2.2.1
colorama                    0.4.6
colorcet                    3.0.1
comm                        0.2.2
cycler                      0.12.1
cython                      0.29.33
cython_runtime              NA
dask                        2024.6.2
dateutil                    2.8.2
debugpy                     1.6.6
decorator                   5.1.1
defusedxml                  0.7.1
dill                        0.3.6
dot_parser                  NA
exceptiongroup              1.1.3
executing                   1.2.0
fastjsonschema              NA
fqdn                        NA
gudhi                       3.10.1
h5py                        3.10.0
idna                        3.4
igraph                      0.10.5
importlib_metadata          NA
ipykernel                   6.21.3
ipython_genutils            0.2.0
ipywidgets                  8.1.3
isoduration                 NA
jedi                        0.19.0
jinja2                      3.1.2
joblib                      1.3.2
json5                       NA
jsonpointer                 2.3
jsonschema                  4.17.3
jsonschema_specifications   NA
jupyter_events              0.6.3
jupyter_server              2.4.0
jupyterlab_server           2.20.0
kiwisolver                  1.4.5
leidenalg                   0.9.1
llvmlite                    0.39.1
louvain                     0.8.0
markupsafe                  2.1.3
matplotlib_inline           0.1.6
mpl_toolkits                NA
mpmath                      1.3.0
msgpack                     1.0.5
natsort                     8.4.0
nbformat                    5.9.2
networkx                    2.8.8
numba                       0.56.4
numcodecs                   0.12.1
numexpr                     2.8.4
nvfuser                     NA
opt_einsum                  v3.3.0
packaging                   23.1
parso                       0.8.3
patsy                       0.5.3
pexpect                     4.8.0
pickleshare                 0.7.5
pkg_resources               NA
platformdirs                3.8.1
plotly                      5.23.0
prometheus_client           NA
prompt_toolkit              3.0.39
psutil                      5.9.4
ptyprocess                  0.7.0
pure_eval                   0.2.2
pyarrow                     16.1.0
pycparser                   2.21
pydev_ipython               NA
pydevconsole                NA
pydevd                      2.9.5
pydevd_file_utils           NA
pydevd_plugins              NA
pydevd_tracing              NA
pydot                       1.4.2
pygments                    2.15.1
pynndescent                 0.5.11
pyparsing                   3.1.2
pythonjsonlogger            NA
pytz                        2023.3
referencing                 NA
requests                    2.29.0
rfc3339_validator           0.1.4
rfc3986_validator           0.1.1
rpds                        NA
scipy                       1.14.0
seaborn                     0.13.2
send2trash                  NA
setuptools_scm              NA
six                         1.16.0
sklearn                     1.5.1
sksparse                    0.4.8
sniffio                     1.3.0
socks                       1.7.1
sparse                      0.14.0
sphinxcontrib               NA
stack_data                  0.6.2
statsmodels                 0.14.0
sympy                       1.11.1
tblib                       3.0.0
texttable                   1.6.7
threadpoolctl               3.4.0
tlz                         0.12.0
toolz                       0.12.0
torch                       2.0.1+cu117
tornado                     6.3
tqdm                        4.65.0
traitlets                   5.9.0
typing_extensions           NA
umap                        0.5.5
uri_template                NA
urllib3                     1.26.15
wcwidth                     0.2.6
webcolors                   1.11.1
websocket                   1.5.1
yaml                        6.0
zarr                        2.18.2
zipp                        NA
zmq                         25.0.2
-----
IPython             8.15.0
jupyter_client      8.2.0
jupyter_core        5.3.0
jupyterlab          3.6.1
notebook            6.5.3
-----
Python 3.10.8 | packaged by conda-forge | (main, Nov 22 2022, 08:23:14) [GCC 10.4.0]
Linux-4.18.0-477.21.1.el8_8.x86_64-x86_64-with-glibc2.28
-----
Session information updated at 2025-01-14 18:45